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Universality of the optimal path in the strong disorder limit
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We study numerically the optimal paths in two and three dimensions on various disordered lattices in the
limit of strong disorder. We find that the lengthof the optimal path scales with geometric distancas ¢
~ rdopt with dopt=1.22£0.01 ford=2 and 1.44+0.02 fod=3, independent of whether the optimization is on a
path of weighted bonds or sites, and independent of the lattice or its coordination number. Our finding suggests
that the exponend,, is universal, depending only on the dimension of the system.
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The statistical properties of optimal paths in a disorderecconnecting sitesA and B, which minimizes the sum of
energy landscape have been studied extensively in recemeights of all visited sites or bonds on the way frénto B.
years[1-12. Optimal path properties are relevant to manyThe limit 3— < is the strong disorder limit, where only the
optimization problems, including the folding of proteins, largests along the path dominates the sum. It is rigorously
spin glasses, and the well-known traveling salesman protProved[6,10-13 that the optimization in strong disorder is
lem. Several studies considered the optimal paths in thquivalent to removing sites or bonds in random order, pro-
strong disorder limit, where a single site or bond weightV'd.ed that the connectivity betwedénandB is not destroyed.
dominates the weight of the whole path, and found that thd his can be understood if the order of removal is determined
length ¢ of the optimal path scales with distanceas rfo, by the descendmg value_s of energies of fche sites or bonds.
wheredgy=1.2240.02 ind=2 anddyp=1.43%0.03 ind=3 For each lattice of sizé. XL in two d'mfnggons or
[6,10]. Since the optimal path can be mapped to the mini-t>.<|'>< Lf'g. thrge d.'melns'onf'dwg gtinerdt:—l / reallza—l .
mum spanning tre¢13] and to invasion percolation with Ions of disorder implemented by the order of removal o

trapping[7,14], it follows that the paths between two sites sites (1r bonds. In all reallzatlons,' we place SI!E!S(0,0,'Q
. ! andB=(r,0,0 at the same locations separated by distance
separated at a distancein all three problems scale as the

optimal path, with the same exponexks, r=L/2. For each realization we compute the length of the

Recently, Knackstedit al. [15] studied invasion percola- optimal path,¢, left after removing all sites or bonds from

. . . ; he lattice, except those whose removal would destroy con-
tion with trapping and concluded that the scaling exponent o ectivity betweerA andB. In both casessites or bondsthe

the minimal path depends on the lattice coordination ”Umbel'éngth of the patt is defined as the number of bonds con-
and is therefore not universal. They further argue that sinC@ecting sitesA and B. We compute the distributioR(¢,r),

optimal paths in strongly disordered media and minimumye averagel o,=(¢), and the average squa¢té?) over all
spanning trees on random graphs are related to invasion P&salizations of disorder.
colation, it follows that these problems also do not possess To implement various lattices with different coordination
universal scaling properties. Here we directly study the Opti'numbers, we always start with a square lattice in two dimen-
mal paths in the strong disorder limit and find that theirgi,hg o 5 cubic Iattice in three dimensions. In the square
scaling properties are universal. The fact that the scaling %httice a site i i) is connected with four sitegi,j+1)
optimizatiqn paths is uniyersal _enables one to study only Onﬁtl,j). In the 'triangular lattice, of coordination r,lumbzyer
type of lattice for each d|m§n5|on. . . =6, it is connected with two additional sitést+1,j+1) and
We perform numerical simulations in the strong dlsorder(i ~1.,j-1). In the “star” lattice withz=S8 it is connected with
limit of the optimal path between two sitédsandB in sev- . L ) . .
eral two-dimensiona(2D) and three-dimensiongBD) lat- tWO. more S'tes('_l’”.l) a}nq ('.+1’J_1)' In the .hexa.gor!al
tices with periodic boundaries. Strong disorder is usually@ttice (z=3), every site(i,j) is connected with sitesi
implemented by assigningo either sites or bonds of the —1.)and(i+1,j), and in addition, it is connected with sites
lattice) random energies;, uniformly distributed on an inter- (1,j+1) if i+]jis even, or with(i,j-1) if i+jis odd.
val [0, 1], and computing the weights associated with them, [n @ simple cubic lattice each site,,k) is linked with
z=6 sites:(i+1,j,k), (i,jx1,k), and(i,j,kx1). To imple-
7, = expBe), (1) ment a face-centered-cubiécc) lattice with coordination
number 12 we connect each sitg,j,k) with sites (i
where 3 is the strength of disorder which has the physicaly 1 j k) (i-1,j,k), (i,j+1,k), (i,j—1,k) in the same plane,
meaning of inverse temperature. The optimal path is the patyith sites (i,j,k+1), (i+1,j,k+1), (i,j+1k+1), (i+1,]
+1,k+1) in the plane above, and with sitds,j,k—1), (i
-1,j,k=1),(,j-1,k=-1), (i-1,j-1,k-12), in the plane be-
*Current address: Physics Department, Yeshiva University, 5000w.
W. 185 Street, New York, NY 10033. We find that for both site and bond lattices in two and
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FIG. 1. Scaled distributionB(¢,r) for (a) site square lattice(b) bond square latticgc) site triangular lattice, an¢d) bond triangular
lattice, forr=2(0O), r=4(0), r=8(<), r=16(A), r=32(+), r=64(X), andr=128*).

three dimensions, the distributio®$¢,r) converge for large tribution in the case of the square lattice is formed by the
r, as expected for a mass distribution of a fractal object to thgpaths connecting\ andB along the diagonal of the system.

functional form, The sharp fall in the tailx>1 is due to the effect of the
boundaries, since=L/2.
P(¢,r) = F{ ¢ ] ) In analogy with the behavior of the distribution of the
Copth) | €opdr) shortest path length on the percolation clugtes,17, one

= = < < dO - -
whereF(x) is a function of a scaling variabbe= £/ € (Fig. C:; expect foy=L/r>1 and k<x=<y%e a power-law de
1). The shape of the functioR(x) =lim,_..€ ;P (X oy, 1) is '
caused by the particular geometry of the system with peri-
odic boundaries. For example, the second peak of the dis- F(X) ~ X 9F1(X) f o(x/y%op), 3

10° 10°
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FIG. 2. (a) The dependence d@f,, onr for hexagona(z=3, solid line,O), squargz=4, dotted line[), triangular(z=6, dashed linep),
and stanz=8, long dashed line,)*attices for the strong disorder implemented on sjtesd lines and symbojsand bondgthin lines and

symbolg. (b) Same for cubigz=6, solid line,[J) and fcc(z=12, dotted line, ¥ lattices, for sitegbold lines and symbojsand bondgthin
lines and symbols
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FIG. 3. (a) The dependence of successive slope;;iogi(r) on 1/r for hexagonal(z=3), square(z=4), triangular(z=6), and star(z
=8) lattices for the strong disorder implemented on sites and bghgSame for cubidz=6) and fcc(z=12) lattices. The symbols are the
same as in Fig. 2. The linear fits are indicated by the same line styles as in Fig. 2.

whereg is a universal exponent arfgx) andf,(x) are lower  study here, the power-law regime duext@ in Eq. (3) does
and upper cutoff functions, respectively. The functionalnot exist, and the sharp fall in the tail fee>1 in Fig. 1 is
forms of the cutoff functions for the shortest path on a per-described by functio,(x). To find the exponerd,; defined
colation cluster are given by by the scaling relatiorfopt~rdopt, we plot oo VST in a
double logarithmic scaléFig. 2), find its successive slopes

~ - —0; ~
Fa(0 ~ exp(- ax™), dopdr) of the data points, defined as

~ exp(— a.x° - _
Falx) ~ expl=axx®), ) IN LopT2) = In Lo (rIN2)

dop1) = - (6)

where 6;, 6, are positive scaling exponents ang a, are
positive lattice-dependent constants. Our numerical analysis
shows that the same functional form holds for the distribu-and plot them vs 1/ (Fig. 3). The error bars for each point
tion of the optimal path in strong disorder. In analogy with are estimated to beoZr)/ (VM In 2), wherea(r) is the rela-
self-avoiding walks problenmil8] we can conjecture that tive standard deviation of the distributid®(¢,r),

1 [1p2 2
= [(€4) — (€
o1 dopt_l. ® o(r) = - <>€>< : .

Plotting In{In[b/F(x)]} vs In(x), whereb is a constant that ,
must be selected to achieve the best straight-line fits, we fin0t€, that due to Eq2), a(r) — oo, whereay is the standard

5,=5+1 for all 2D lattices and$;=2.6+0.5 for all 3D lat- deviation of F(x) (Fig. 4). Thus, the errors iml,(r) practi-
tices, which is consistent with Eq5). We find also s,  cally do not depend onand constitute foM =10* less than
=2.5+£0.5 in two dimensions ané,=3.0+£0.5 in three di- a percent.

mensions. The values of expongt1.6+0.1 in two dimen- We determine the value of,,; for each lattice as the value
sions andg=1.310.1 in three dimensions can be found by of they intercept of the least-square linear(fig. 3). This fit
simulating systems with larges>1 [19]. Fory=2, which we  assumes corrections to scaling of the form

()

0.8 . . ‘ ‘ 0.8
(a)

0.3 : : : : 0.4

0.0 0.1 02 0.3 04 05 0.00 0.10 0.20 0.30 0.40 0.50

FIG. 4. The relative standard deviatier(r) of the distributionP(¢,r) as function of 1f in (a) two and(b) three dimensions. The
symbols and line styles are the same as in Fig. 2.
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TABLE I. The values of the scaling exponedy,, for different
lattices of various dimensionality and coordination number for
strong disorder implemented on sites and bonds.

d z dopt dopt

Lattice type (site disorder  (bond disorder
Hexagonal 2 3 1.221+£0.02 1.210+0.02
Square 2 4 1.226+0.02 1.213+0.02
Triangular 2 6 1.228+0.02 1.210+0.02
Star 2 8 1.224+0.02 1.218+0.02
Cubic 3 6 1.441+0.03 1.425+0.03
fcc 3 12 1.458+0.03 1.429+0.03
Copt=a(r + b)%pt+ o(rpt ), (8)
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invasion site percolation with trapping in triangular and star
lattices [20]. Our resultd,,=1.22+0.01 is consistent with
Ref. [15] for other site and bond lattices.

In summary, we find that the values df are universal
for all lattice types studied for both site and bond problems,
and depends only on the dimensionality of lattdteThese
findings agree with the assumption thdy,, monotonically
increases withd from d,,/d=1 for d=1, to d,,=2 for d
=d.=6, which is the upper critical dimension of percolation
[21], since ford=d,, we expect to recover fdf,, a random-
walk behavior withd,,=2. Since a random network corre-
sponds to an infinite-dimensional lattice, the latter value de-
fines the behavior of ., as a function of the number of sites
N on a random network,

— rdopt~ Ndoplldc — N1/3. (10)

eopt
The scaling(10) was found to hold for random networks for

wherea andb are lattice-dependent constants. The values opoth site and bond disorder, and any coordination number
dopt for each lattice are presented in Table I. All these value§12]. Since invasion percolation with trapping and minimal

are within the error bars from

{1.22¢o.01 (2D) ©

Pt~ | 1.44+0.02 (3D).

This result ford=2 is quite different from the value of

spanning trees are mapped to optimization in strong disorder,
our results suggest also that these systems possess universal
character—in contrast with the conclusion in R@f5].

We wish to thank P. Grassberger for discussions and the
Israel Science Foundation and the Office of Naval Research

1.135+0.003 obtained in Ref15] for the shortest path in for support.
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